Real Estate Home Pricing: Hedonic model variables and

Community Amenities Roles

by

Tim Dorr

University of Bridgeport

Abstract

Forecasting a home sale asking price using traditional hedonic pricing models is problematic: buyers have lost confidence in the market's response to such forecasted asking prices. With the restriction of federal and state funding sources for community services home buyers may face increased property taxes depending on the community they select. In turn this may affect the prices and neighborhoods that they search in. This study examines whether hedonic model variables remain viable for sales price forecasting and whether the level of available community services affects town selection decisions for home buyers. All data was developed from databases in the public domain. The study focuses on an examination of variance as measured within a linear regression model.

Keywords: Real Estate asking prices, Hedonic modeling, Regression, ANOVA

Journal of Management and Innovation, 2(2), Spring 2016

Introduction

Although the residential real estate market has stabilized in the five -- seven years following the financial crisis of 2008 the market remains generally depressed with price growth stagnant (National Association of Realtors [NAR], 2014). In turn forecasting an initial asking price using traditional hedonic pricing modelsⁱ is problematic: buyers have lost confidence in the market's response to such forecasted asking prices (NAR, 2014). Additionally, community amenities such as access to schools, libraries and transportation may be viewed by buyers as a potential tax liability given reduced availability of federal and state funding for local services.

These conditions raise two questions:

- Are hedonic variables such as square footage, number of: bathrooms, bedrooms, etc. good predictors of the variance observed in asking prices? The expectation is that the sold price will vary directly with changes in square footage of properties. Although there are several variables to choose from, square footage was chosen as the other variables are dependent or alter the total square footage of a property by their presence.
- 2. Given that community residential real estate tax rolls have contracted as a result of the 2008 Recession, have home buyers as measured by sold prices retreated from communities that have high community services offerings available to residents? The expectation is that although the communities offer a significantly different range of services there will be no significant difference among the average sold prices per square foot

Journal of Management and Innovation, 2(2), Spring 2016

among those communities. To evaluate this possibility, the sales price per square foot of properties was compared across three adjacent communities in Fairfield County, Connecticut. Given that the communities vary in the number and size of homes available for sale, creating this sold price per square foot variable minimized community size and housing stock availability effect.

The variables that will be examined are the publicly available town recorded sold price of homes in thousands, the square footage of the homes sold and the town in which the homes were sold. The first two variables are numeric and the third variable is categorical. This data will be drawn from Listingbook (Listingbook Website, n.d.). An additional numerical variable: sold price per square foot, will be created for analyzing the second question.

By definition a Hedonic model offers several variables that can be unbundled to support an asking price forecasting model. These variables were examined in a prior study relating to this geographic area (Dorr, 2015). Modeling the data using a step-wise multi-regression model revealed that square footage leads other variables with its explanatory power approaching 63%. The risk in hedonic modeling is the amount of inter-variable correlation: if lot size increases it will be reflected in increased taxes paid. While these added variables increase the model's explanatory power that increase does not offset the danger of overfitting the training data (Frost, 2015).

The data for this study will be drawn from the contiguous communities of Easton, Fairfield, and Weston located in Fairfield County, Connecticut. Easton and Weston are

Journal of Management and Innovation, 2(2), Spring 2016

exurban communities located approximately 65 miles northeast of Manhattan, New York (see Appendix A). They are considered within a commutable distance of Manhattan. Development in Easton is restricted as 75% of the town land is a part of the Southern Connecticut watershed. Weston is similar to Easton in that it exurban in nature however, commercial development is not restricted. In contrast Fairfield is a large suburb of Manhattan with higher density and significant commercial development. Given the wide range of median home values indexing the value to square footage creates a relative measure across the three towns.

Table 1

Selected Demographic Data for Sample Towns

Median HH Value	Median HH Income	Cost of Living Index
\$729,919	\$125,557	151.8
\$493,741	\$105,059	154.3
\$1,000,000	\$184,547	163.6
	\$729,919 \$493,741	\$729,919 \$125,557 \$493,741 \$105,059

Source: (United States Census Bureau [Census], 2010)

Data Collection

Study data was drawn from information that is available through Listingbook[®]. This company complies publicly available data on the homes available for sale as well as the amount of time that homes are available prior to selling along with the prices that homes have sold for. Information on the homes available such as square footage, number of room etc. is copied from local town records that are reviewed and submitted to Listingbook by real estate agents listing homes for sale. This information is added to the active listings for the agent.

Journal of Management and Innovation, 2(2), Spring 2016

A systematic sampling scheme was used to gather the data. A systematic sample was chosen as it reflects the logical homogenous nature of the housing market. In effect houses for sale should be uniformly distributed over the entire housing stock of the towns. Given the total number of homes in each town sold during the past 36 months (Listingbook Website, n.d.) a *K*-interval was developed using the formula $k = \frac{N}{n}$ where *n* represents the sample size and *N* the population size. Starting at a random point in the list approximately 40 properties were selected for each town. The data for each sold home selected was entered into an a password protected Excel spreadsheet. The data included sold price, square footage, and days on market [DOM]. A fourth data column was created for sold price per square foot.

Sampling bias. Applying a systematic sampling method ensures that each home sold has an equal probability of selection. As a result this sampling approach is similar to a simple random sample with the benefit of being more efficient; given an equal probability for any one home sold to be selected sampling bias is minimized.

Statistical Analysis Design

The development of the hypotheses reflects our challenge to a null claim. In one sense we challenge the status quo or null when we suspect that it is not correct. The following hypotheses for each question reflect this position:

1. Question One.

a. **Ho**: There is no linear relationship between the sold price and the square

footage of a home in the three Fairfield County markets selected.

Journal of Management and Innovation, 2(2), Spring 2016

b. **Ha**: There is a linear relationship between the sold price and the square

footage of a home in the three Fairfield county markets selected.

2. Question Two:

- a. Ho: There is no difference in the average sold price per square foot based on the home's town location.
- b. Ha: There is a difference in the average sold price per square foot based on the home's town location.

At the outset it is predicted that the following hypotheses will be supported as a result of the tests:

3. Question One.

a. **Ha**: There is a linear relationship between the sold price and the square

footage of a home in the three Fairfield county markets selected.

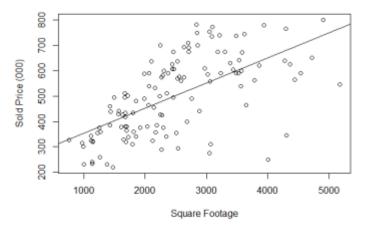
4. Question Two:

b. **Ho**: There is no difference in the average sold price per square foot based on the home's town location.

Each set of hypotheses will be tested at the $\alpha = 0.05$ significance level.

Statistical Analysis Results

Question One


In order to test whether a linear relationship exists between the sold price of a house and its square footage a linear regression test will be used. An initial inspection of

Journal of Management and Innovation, 2(2), Spring 2016

the data suggests that there is a linear relationship however it is not strong based on the variability in the data as shown in Figure 1:

Figure 1. Data Summary

Price to Square Footage--Easton, Fairfield & Weston

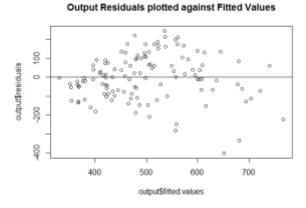
When the results of the test are examined there is a relationship as demonstrated by the coefficient of determination $r^2 = 0.3879$; however, this value suggests that only 38.8% of the variance observed in the dependent variable price is explained by the variance in the corresponding square footage of the property that was sold. In effect, approximately 61% of the variance observed in the sold price data remains unexplained.

As a measure of significance an analysis of variance test was conducted which resulted in an F-value of 76.688 and a resulting p-value of 1.451e-14 (see Figure 2). This small p-value supports a conclusion that we have strong evidence to reject the null hypothesis.

Figure 2. ANOVA Table

Response: Price								
	Df	Sum Sq	F value	Pr(>F)				
SqFt	1	1110894	1110894	76.688	1.451e-14			
Residuals	121	1752788	14486					

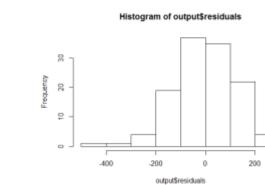
Journal of Management and Innovation, 2(2), Spring 2016


(cc) BY

Assumption tests. When conducting a linear regression test there are five

assumptions that require examination to validate the regression results:

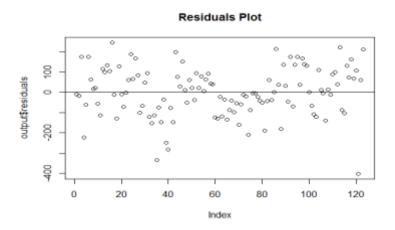
- 1. Assumption One-Data-pairs Relationship -- Distribution
 - a. A data scatter plot shows a relationship that is suggested by figure1.
 - b. The residuals are normally distributed with a mean of zero about the fitted values:


```
Figure 3.
```


In this case the scatter diagram and the residuals plot meet the criteria: a linear model is appropriate.

- 2. Assumption Two-Residuals Normal Distribution
 - a. The residuals are normally distributed with a mean of zero (Figure 4):

Journal of Management and Innovation, 2(2), Spring 2016



data: output\$residuals W = 0.9847, p-value = 0.1796

While the residual histogram shows a left skew the Shapiro-Wilks test confirms normal distribution—the p-value is greater than $\alpha = 0.05$ and we fail to reject the null hypothesis: residuals are normally distributed..

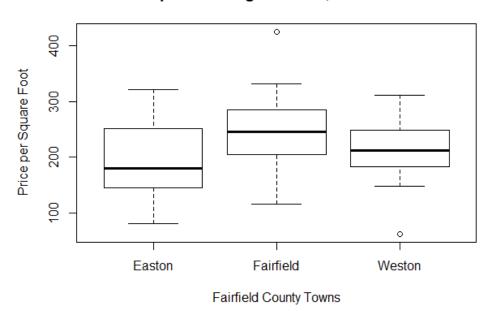
- 3. Assumption Three—Residual Variance
 - a. The residuals have constant variance:

In this instance there are no apparent triangles or *bow ties* so the residuals have constant variance.

Journal of Management and Innovation, 2(2), Spring 2016

(cc) EY Copyright Creative Commons 3.0

Figure 4.


- 4. Assumption Four-Residual Independence
 - a. Figure 5 shows that the residuals are independent based on the lack of a pattern in their distribution about zero.

Based on a p-value of 1.451e-14 we have enough data to support rejecting the null hypothesis that there is no linear relationship between the sold prices (000) of homes and their respective square footage at the $\alpha = 0.05$ significance level.

Question Two

In order to test whether there is no difference in the average pricing per square foot of homes sold in the three communities—Easton, Fairfield and Weston—at the α = 0.05 significance level an ANOVA test will be conducted. An initial inspection of the data using boxplots suggested that there is no difference among the average sold price per square foot as shown in Figure 6.

Figure 6. Town Data Summary

Price to Square Footage--Easton, Fairfield & Weston

Journal of Management and Innovation, 2(2), Spring 2016

The results for the ANOVA test are presented in Table 2.

Table 2.

Analysis of Variance

	df	Sum of Squares	Mean SS	F-value	p-value
Town	2	65538	32769	10.24	7.85e-05
Residual	120	384127	3201		

Having conducted the test, the resulting small p-value suggested that validity be tested using a series of post hoc tests.

1. Levene's Test for Homogeneity of Variance

This test assesses the equality of the variances. If the p-value is sufficiently high such that it exceeds the $\alpha = 0.05$ significance level, then we cannot reject the null hypothesis that the sample variances are equal. In this instance, the p-value is 0.689 (greater than $\alpha = 0.05$) indicating that we cannot reject the null; the variances are equal.

2. Shapiro-Wilks Normality Test

The null hypothesis for this test is that the population is normally distributed and that the data taken will be normally distributed as well.

Table 3

Easton	W = 0.9634	p-value = 0.1947
Fairfield	W = 0.9734	p-value = 0.4582
Weston	W = 0.9675	p-value $= 0.2849$

Shapiro-Wilks Normality Test ($\alpha = 0.05$)

Journal of Management and Innovation, 2(2), Spring 2016

(cc) BY Copy

Table 3 summarizes the p-values for each town's sample data; in each case the p-value exceeds the $\alpha = 0.05$ significance level and the null hypothesis that the populations and in turn the samples are normally distributed cannot be rejected.

3. Pair-wise Comparison Test with Pooled Standard Deviation— Bonferroni

In this test we evaluate the pairs of data to determine which pair results in a statistically significant difference. In this instance the pair with a significant difference (p-value less than $\alpha = 0.05$) is Easton and Fairfield with a p-value of 4.3e-05 as reported in table 4.

Table 4

P-value Adjustment Method--Bonferroni

Data: Price, Foot & Town

	Easton	Fairfield
Fairfield	4.3e-05	
Weston	0.061	0.095

4. Tukey Honestly Significant Difference [HSD] Test

The Tukey HSD test confirms the pair-wise comparison test. Table 5 reports that there is a significant difference at the $\alpha = 0.05$ significance level between the sample data for the towns of Easton and Fairfield.

Journal of Management and Innovation, 2(2), Spring 2016

Table 5

Tukey HSD Test

95% family-wise Confidence									
Town	Diff	Lower	Upper	P Adjusted					
Fairfield-Easton	56.527	26.864	86.191	0.0000428					
Weston-Easton	29.205	-0.2725	58.683	0.0527370					
Weston-Fairfield	-27.322	-57.162	2.517	0.0800222					

Based on a p-value of 7.85e-05 and the results of the post hoc tests we have enough data to support rejecting the null hypothesis at the $\alpha = 0.05$ significance level that there is no difference in the average sold price per square foot based on the town that the property is located in.

Findings

This study was undertaken to examine two questions:

- Are hedonic variables such as square footage, number of: bathrooms, bedrooms, etc. good predictors of the variance observed in asking prices and,
- given that community residential real estate tax rolls have contracted as a result of the 2008 Recession, have home buyers as measured by sold prices retreated from communities that have high community services offerings available to residents.

Journal of Management and Innovation, 2(2), Spring 2016

Based on the tests used to address these questions at the $\alpha = 0.05$ significance level, clearly within the contiguous towns of Easton, Fairfield and Weston located in Fairfield County Connecticut the square footage of homes offered for sale can be used to explain differences in the sold prices of those homes. Further, although the real estate market for these towns has changed following the 2008 Recession such factors as the services offered by towns will still play a positive role in home purchase selection.

Discussion

As originally suggested variables such as the square footage of a property can be used to explain changes in the selling prices of homes in these markets. While the finding was significant at the $\alpha = 0.05$ level the coefficient of determination was not as robust as anticipated. While the coefficient of determination may be strengthened by the addition of other variables such as the number of bedrooms and bathrooms this leads to correlation which may give a false sense of variance explanation. These results suggest that further study is needed on these variables to define their correlation to changes in selling prices of homes in these towns.

The findings for question two were not anticipated. It would appear that high levels of community services are attractive to home buyers in this county. This seems apparent when considering that a significant difference exists between Fairfield with substantial community services offerings and Easton where community services offerings are limited. If we consider the three towns, there may be variables that create attractiveness other than community services. Given the high median home price in Weston status factors may play a significant role in attracting buyers to that market.

Journal of Management and Innovation, 2(2), Spring 2016

Table 1 data shows that Weston had higher values for each of the three measures vis-àvis Fairfield and Easton. These differences may be masking another variable that has a higher explanatory value in relation to the variance observed in selling prices of homes in these communities.

Implications

This study is limited by the geography selected; while the feel of each town is significantly different the three towns are within the economic sphere of Manhattan. This influence is felt in terms of average Fairfield County household income—ranked 39th out of 3,144 counties in the U'S. (Census, 2010) and the concurrent real estate values versus other areas of the United States.

While this study demonstrates that an alternative home sale price forecasting model is available, the data selected may include or mask some alternative explanatory variables (Borsboom, 2008). Specifically, intrinsic latent variables may guide buyers, sellers and agents in home sales pricing and these variables are not contained within the variables used in hedonic pricing models. For realtors this alternative model offers a way to work with familiar variables within a new price forecasting model.

Journal of Management and Innovation, 2(2), Spring 2016

Appendix A

Raw Data Used

Town	Price	SqFt	PriceFoot	DOM	Town	Price	SqFt	PriceFoot	DOM	Town	Price	SqFt	PriceFoot	DOM
Easton	600.0	3575	167.8	76	Fairfield	754.0	3048	247.4	62	Weston	610.0	2972	205.3	87
Easton	620.0	3856	160.8	96	Fairfield	502.0	1722	291.5	60	Weston	640.0	4272	149.8	113
Easton	675.0	2464	273.9	102	Fairfield	440.0	1572	279.9	111	Weston	557.5	3058	182.3	127
Easton	545.0	5172	105.4	334	Fairfield	675.0	2717	248.4	76	Weston	750.0	2852	263	61
Easton	625.0	4363	143.3	372	Fairfield	427.5	1632	262	130	Weston	641.5	3537	181.4	189
Easton	692.0	2636	262.5	70	Fairfield	427.0	2250	189.8	62	Weston	220.0	1482	148.5	25
Easton	673.0	3583	187.8	49	Fairfield	531.0	2167	245	88	Weston	587.0	1992	294.7	137
Easton	590.0	3233	182.5	84	Fairfield	499.0	2238	223	101	Weston	585.0	3022	193.6	87
Easton	510.0	2358	216.3	113	Fairfield	490.0	2764	177.3	67	Weston	322.2	1154	279.2	98
Easton	424.9	2276	186.7	60	Fairfield	675.0	3298	204.7	227	Weston	734.4	3085	238.1	141
Easton	590.0	4539	130	76	Fairfield	429.9	1560	275.6	45	Weston	375.0	1920	195.3	45
Easton	599.0	2303	260.1	66	Fairfield	539.0	2066	260.9	56	Weston	780.0	3937	198.1	77
Easton	580.0	2285	253.8	184	Fairfield	465.0	2058	226	126	Weston	637.5	2100	303.6	97
Easton	637.5	2530	252	289	Fairfield	460.0	1428	322.1	49	Weston	490.0	1988	246.5	90
Easton	675.0	3188	211.7	62	Fairfield	494.5	1492	331.4	56	Weston	740.0	3211	230.5	78
Easton	781.0	2842	274.8	96	Fairfield	480.0	1855	258.8	120	Weston	738.5	3480	212.2	52
Easton	590.0	3520	167.6	172	Fairfield	437.5	1440	303.8	46	Weston	590.0	2070	285	93
Easton	565.0	4438	127.3	83	Fairfield	230.0	1008	228.2	255	Weston	433.5	1806	240	80
Easton	625.0	2445	255.6	176	Fairfield	239.9	1144	209.7	64	Weston	540.0	3562	151.6	262
Easton	590.0	3483	169.4	150	Fairfield	355.0	1229	288.9	54	Weston	375.0	2300	163	178
Easton	650.0	4717	137.8	189	Fairfield	260.0	1266	205.4	77	Weston	311.0	1794	173.4	153
Easton	418.0	1676	249.4	71	Fairfield	377.5	1611	234.3	293	Weston	607.0	2445	248.3	360
Easton	800.0	4900	163.3	88	Fairfield	232.1	1142	203.3	167	Weston	605.0	3436	176.1	251
Easton	710.0	2698	263.2	88	Fairfield	339.0	1728	196.2	35	Weston	495.0	2464	200.9	413
Easton	570.0	2530	225.3	80	Fairfield	325.0	1124	289.2	56	Weston	325.0	2126	152.9	77
Easton	690.0	2717	254	86	Fairfield	340.0	1854	183.4	106	Weston	435.0	1680	258.9	66
Easton	765.0	4298	178	67	Fairfield	300.0	998	300.6	114	Weston	454.9	2144	212.2	51
Easton	440.0	2890	152.3	223	Fairfield	230.0	1382	166.4	210	Weston	510.0	1673	304.8	177
Easton	562.5	3788	148.5	129	Fairfield	365.0	1698	215	47	Weston	590.0	2372	248.7	229
Easton	559.0	2584	216.3	176	Fairfield	385.0	1432	268.9	59	Weston	630.0	3387	186	159
Easton	575.0	2269	253.4	218	Fairfield	360.0	1278	281.7	89	Weston	699.0	2250	310.7	182
Easton	400.0	2688	148.8	354	Fairfield	295.0	2536	116.3	99	Weston	385.0	2192	175.6	77
Easton	465.0	3653	127.3	87	Fairfield	330.0	1652	199.8	198	Weston	318.5	1691	188.4	78
Easton	357.3	2175	164.3	85	Fairfield	375.0	1260	297.6	99	Weston	745.0	3624	205.6	138
Easton	345.0	4304	80.16	169	Fairfield	326.3	768	424.9	73	Weston	494.9	1674	295.6	153
Easton	360.0	1813	198.6	71	Fairfield	343.0	1116	307.4	71	Weston	699.0	2860	244.4	199
Easton	340.0	2345	145	116	Fairfield	380.0	1677	226.6	97	Weston	575.5	2557	225.1	67
Easton	315.0	978	322.1	225	Fairfield	318.5	1152	276.5	108	Weston	607.0	2471	245.7	172
Easton	310.0	3068	101	83	Fairfield	290.0	2266	128	162	Weston	250.0	4005	62.42	205
Easton	275.0	3047	90.25	99	Fairfield	381.0	1702	223.9	64	Weston	575.0	2634	218.3	127
Easton	380.0	2036	186.6	202						Weston	772.5	3100	249.2	198
Easton	355.0	2513	141.3	93										

Journal of Management and Innovation, 2(2), Spring 2016

References

- Borsboom, D. (2008, February). Latent variable theory. *Measurement*, 6(1/2), 25-53. http://dx.doi.org/10.1080/15366360802035497
- Dorr, T. G. (2015). My home's market value: An active market pricing model. *Journal of Management and Innovation*, *1*. Retrieved from http://jmi.mercy.edu
- Frost, J. [The Minitab Blog]. (2015, September 3). The danger of overfitting regression models [Blog post]. Retrieved from http://blog.minitab.com

Listingbook Website. (n.d.). http://www.listingbook.com/home/

- National Association of Realtors. (2014). *Profile of home buyers and sellers*. Retrieved from http://www.realtor.org/
- United States Census Bureau. (2010). *Housing Vacancies and Homeownership* (CPS/HVS). Washington, DC: Government Printing Office.

ⁱ Hedonic pricing models are based on the premise that the price of an item can be decomposed into its elements—internal or relating to the property and external relating to things such as the quality of the school or the air quality. As originally conceived hedonic modeling is based on decomposing a complex item into a subset of components that have individual market value. As such these variables could be measured and should be independent of each other (Sirmans, Macpherson, & Zietz, 2005).